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ABSTRACT

In this paper we characterize all convex functionals defined on certain

convex sets of hermitian matrices and which depend only on the eigenvalues of

matrices. We extend these results to certain classes of non—negative matrices.

This is done by formulating scmte new characterizations for the spectral radius

of non—negative m4trices, which are of independent interest.
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SIc~~IFICANCE AND EXPLANATION

The following result is useful in connection with matrix applications: If

r . A
1
(A) denotes the largest eigenvalue of a hermitian matrix A , then

(1) A
1
(A+B ) < A~~(A) + A

1
(B)

k; i.e., if A and B are hermitian matrices , the largest eigenvalue of A+B is

at most the sum of the largest eigenvalue of A and B. The quantity A
1

(A) is

a functional , i.e. a scalar depending on the matrix A. The above example suggests

the following problem which is solved in this paper: Determine all functionals

+(A) depending only on the eigenvalues A1,... A of A such that +(A) is

convex, i.e.

(2) +(aA + (l—a)B) < a $ (A) + (l—a)+(B), 0 < a < 1

when A , B are hermitian. In economics and biology one very often deals with

non—negative matrices. Denote by A1
(A) the spectral radius of a non—negative

matrix A > 0, i.e. the largest non-negative eigenvalue of A. The fact that

A 1
(A) > 1 or A

1
(A) < 1 plays a crucial role in the stability behaviour of the

system. So any convexity results on A1
(A) are helpful to estimate A

1
(A) . Un-

fortunately (1) does not hold in general for A , B non-negative. In this paper

we prove the validity of (1) for A , B non-negative if B-A is a diagonal matrix.

We extend this result for more special type of non—negative matrices. To derive

these results we bring new characterizations of the spectral radius of non—negative

matrices. 
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CONVEX SPECTRAL FUNCTIONS

Shmue l Fried land

1. Introduction

• Let A be an n x n matrix with complex entries. We arrange the sigenvalues of A in

the following order

(1.1> Re A 1(A) > Re X2(A) >...> Re X 1~(A)

By H~ we denote the set of all n X n hermitian matrices. For A € H the classica l maximal

characterization state s

(1.2) A 1(A) = sax (Ax,x)
(x ,x) —l

Thus X1
(A) is a convex functional on H .  Ky Fan extended (1.2) (31

k Jc
(1.3) ~ X.(A) max 

~ 
(Axj,xi

)
i=l (x.,x.)=ó . i=l

1]  ii

k
In particular ~ A~ (A) is a convex functional on H

n~ 
A function

j=l

(1.4)  + :A + P ( A c H
5
)

is called a spectral function if

(1.5) $(A) = F(A1
(A) ,. ~X (Afl~ F X + P , X C

‘ 
Here consists of all vectors (x

11... 
,x ), x

1 
> x2 >...> x .  In Section 2 of this paper

we characterize all F for which $ is a convex functional on A. It turns out that F must

be convex on X and F Schur’s order preserving [lii .

(1.6) F(a) < F($) if n 
l’~~~ ’%~ 

< B — (61
,...,B )

F k
(1.7) 

~ 
B • i =

i—i i—l
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(1.8) 
i~l 

~~ — 

11 
B~ .

We also characterize all F such that $ is strictly convex. Let A be an n X fl non-

negative matrix. As usual denote by r(A) the spectral radius of A. So X
1(A) — r(A). r(A>

• is not a convex functional on non-negative matrices. For example consider

(1.9) A (
~ ~

) , r(A) =

Recently (11 Cohen proved that r (A) is a convex function in i-th diagonal entry of A for

any 1 < i < n. We extend Cohen’s result namely, we show that r(A+D) is convex on D —

the set of all n x n real diagonal matrices. In fact this result is a consequence of the

Donsker—varadhan characterization of rCA) (21 . In Section 3 we bring more general characteri-

zations of rCA) by using a certain fundamental inequality for non-negative matrices establish-

ed in (5). This enables us to show that log r(eDA) is also convex on D
n for a non—negative

A. If A ’ happens to be an M—matrix then we have a stronger result. Namely, r(DA) is con-

• vex on D~ — the subset of non-negative matrices in D .  This is done in Section 4.

In Section 5 we show how the results of Section 2 can be extended to the non—synsuetric case

by assuming that A is a totally positive matrix of order i(TP~). We shall state our results

in case that A is a ‘~~~ 
~~~~~ 

matrix. That is all minors of A (of all orders) are non-

negative. In that case we have

• (1.10) A 1(e
0A) > A~~(e~A) > ...> A ( e ~A) > 0, D €

If A is non-singular then the last inecmality is strict. Let

(1.11) $(o)  = F(log X
1(e

DA),...,log X~ (e
0A))

Then • is convex on A c if and Only if F is convex on X and Schur ’s order preserving.

We remark that the results in Section 2 hold for syimnetric compact operators in Hu bert

space. The results of Section 3—5 can be extended to appropriate integral operators, for

example, as it was pointed out in 15).
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2. ~~~~~~~~~~~~ functions on the spectrum of hermitian matrices

Let A be an n x n hermitian matrix. We can view A as a self adj oint operator on

• endowed with the standard inner product

(2. 1) (x ,y) = y*x , x ,y E

Since the eigenvalues of A are real we arrange them in the decreasing order

(2 .2 )  A 1(A) >...> A (A)

Denote by 
~l
’”’

~n 
the corresponding set of orthonormal eigen-vectors of A

(2.3) A~ . = A u (A) F~~u ,  — i , j  — li.. .~n

f Let H denote the set of all n x n hermitian matrices. Since A (A) has the maximal
t

characterization

A 1
(A) = sax (Ax,x)

• ( x, x)=l

A 1
(A) is a convex function on H .  More generally we have (4)

Theorem 2.1. Let be a decreasing sequence of real numbers

(2.4)

Then for~~py A belonging to H

(2.5) ~ = max 
~ u~ (Ax~ ,x~ )

• i l  ~~~~~~~~~~~~~~~~~~~ . ~n i=l

Assume that the equality sign holds for some x1,... ,x .  ~~~~

(2.6) = .. = > 
~i +1 ~~~~~ 

n
i ~~~~~~~~~ ~i +1 

=~~~~~•= = %‘~~o °~1 1 2 r—l r

• Then there exists an orthonormal eigensystem of A such that the following aubspaces coincide

(2.7) ~~ +l’”’~ i 
) = (x

i +1’” . , ,c
i. 1, j = 0,...,r—1

j  j+l j j+l

The characterization (2.7) in the case that • . ~~~ 
— . • = 0 was established

- by Fan (3 1 .
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In particular
n

(2.8)  $ (A) = 
~ 

a
i

A
~~~

(?I )
• i—l

is a convex functional on H~ if (2 .4)  is satisfied . That is

(2.9) $(cA + (l—c)B) < c$(A) + (l—c)$(B), A S  H , 0 < c < 1

We now are ready to state the prcblem which we solve in this section. A function

(2.10) $ : A + P , A c H

is called a spectral function if

(2.11) $(A) F(A
1
(A),. ..,A (A))

That is $ is defined on the spectrum of A. our problem is to characterize all convex

spectral functions on H .  To answer this problem we introduce some notation and definitions.

Let a = (a
1,...,a ) and B = (B 1, . . . ,B ) be two vectors satisfying (2.4). According to

(7, Sec. 2.18] a is majorized by B, which is denoted by a < B, if

k k
(2.12) 

~ 
a~ ~ ~ 

8~ , k — 1,... ,n—l
i—l i—l

(2.13) 
~ 

a .  — 
~ 

B~i=l i=l
• 

Denote

(2.14) 1(A) = (A
1
(A),...,A (A))

From Theorem 2.1 we obtain

Lemma 2.1. Let A, B e H . Then
— n —

(2.15) A (A+B) < 1(A) + 1(8)

Moreover ,

(2.16) A (A +B ) = 1(A) + 1(B)

if and only A and B have a coranon eigenvector system

—4—



(2 17) ~~~ — A~ (k)~~~ — A~ (B)~~~ ~~~~~ — 6jy i~i 1,

I Proof. L t

(2.18) (A+B)~~ — A~~(A+B )C~~ ~~~~~~~ 
= 

~~j’ 
i,j = 1,...

So for any a — (a1
,... ,a )  which satisfies (2.4) we get

• 

(2.19) 

~ 

u~A~ (A+B) — 

~~ 

~~~~~~~~~~~~~~~ ~~.

~ 
a~A~ (A) + 

~~ 
a~ A~~(B)

i=l i—l

This establishes (2.15). Suppose that (2.16) holds. Then we must have

(2.20) 

~ 

a~A~ (A) = aj(AF j~~i
), 

~ 

a~A~ (B) = 

~~~~ 

ai(B~i
,
~j

)

for any a1 > a 2 >...> 

~~~~

. Choose ai 
= n—i. Then the equalities (2.7) imply (2.17). This

conclusion is in fact is stated in Theorem 3.1 in (4) .

• By P~ denote the f ollowing subset of

(2.21) — (x ix — (x
1, . . . , x ) ,  x1 > x 2 > .. . > x ~ }

Clearly

(2.22) 1 H -‘ P~ ( 1(A) —

Let

(2.23) 1(A) — X

Thus the function F in terms of which $ is constructed satisfies F X + P,•

Let D
n 

be the set of all n x n real diagonal matrices and the set of all diagonal

matrices

(2.24) D (a) diag (a
1
,... ,a }, a

1 
> a

2 
> ...> a

Given X c we rec,uire that A should be of the form

(2.25) A = A~~~(X) .

—5—
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suppose B € X. Then D(B) E A.  Thus the assumption that $ is convex on A implies in

particular that $ is convex on D 1 n A.  So we must have that F is convex on X which means

• al so that X must be convex . Let D(8) e A and P be a permutation matrix (6jj÷l
)
~~

(n+ 1 5 1). Then

(2.26 )  ~ ~i~ (8)(pT) = ( 
~• i=l i—i

Here by ~T we denote the transpose of p. Therefore if B e X then B = (b,.. . ,b) € X

(b — 
~ 

B ./n) . This in particular implies that
i—l

(2.27) if 8€  X, a < B, then a € X.

Definition 2.1. Let X c R~~. The set x is called strongly convex if X is convex and the

• condition (2.27) is satisfied.

Theorem 2.2. Let X be a strongly convex set in which contains at least one noint a,

(2.28) a1 
> 

~2 
‘•..> a

Let F X -
~ P. Assume that F € C~~~ (X) . Consider a spectral function $ A + P (A C H~)

where $ and A ~:re given by (2.11) and (2 .25) accordingly. Then $ is convex on A if and

only if F is convex on X and

(2.29) - (a) 

~ 
(a)  > . 

~~~~~ ~~n

for any a E X . Moreover , $ is strictly convex on A , i.e.

(2.30) $(cA + (l—c)B) < c$(A) + (1—c)$(B), A p~ 8, 0 < c < 1

• if and only if F is strictly convex on X and

(2 . 31) (ci ) > (a) if ci . > a.~~1

To prove the theorem we need the following theorem of Ostrowski (111 (Theorems VII and

VIII) .

-6—
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Theorem 2.3. Let X and F satisfy the assumptions of Theorem 2.2. Then F satisfies (2.29)

if and only if 

— ___________________________________ — ________

(2.32) F(a) < F(B) if a < 8.

Moreover

( 2.33) F( a)  < 7(8) if a < 8  and a~~ B

if and only if the condition (2.31) holds.

Proof. Assume first that F is convex on X. So if 1(A), 1(a) € X then

(2.34) F(1 1
~~~) 1* 

(7( 1 (A) ) + 7(1(B)))

According to Theorem 2.3, the assumption (2.29) implies

(2.35) F~~(A;~B)) < F ( 1(8
~)

by the virtue of (2.15). This shows that $ is convex on A .  Assume furthermore that F is

strictly convex on X. So if 1(A) ~ 1(B) the inequality sign holds in (2.34). This implies

(2.30). Suppose that 1(A) = 1(B) but A ~ B. According to Lemma 2.1 1CM-B) ~ ( 1 (A) + 1 ( B ) ) .

So the additional assumption (2.31) yields the inequality sign in (2.35) according to Theorem
- • 2.3. This manifests that $ is strictly convex on A. Assume now that $ is convex on A.

In particular $ is convex on D 1 n A.  This immediately implies that F is convex on X .

Furthermore if $ is strictly convex then F is strictly convex. Let B € X. So D(B) € A .

Assume that a < B. Then D(a) € A.  The classical result of (7,sec. 2.19] states that

• I (2.36) GB = a

where G is some doubly stochastic matrix. The Birkhoff theorem implies

H • k k
(2.37) G = 

~ 
aiPi, a~ >0, ~ a. = 1

i=l i—l

and P~ is a permutation matrix. So

(2.38) 13(a) = 
~ 

ajPiD ( B ) P
~

So the convexity of $ implies

—7—
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k
(2.39) $(D(a)) < ~ a~$(P~D( B ) P’

~) — $(D (B ) )
i—l

which is equivalent to (2.32). Now (2.29) follows from Theorem 2.3. Assume furthermore that

• is strictly convex. Then we must have (2.33) which implies (2.31) according to Theorem 2.3.

The proof of the theorem is concluded.

• Suppose

(2 .40) A c H , m > n

When we can define $ : A + P by (2.11). That is $ does net depend on

i.e. -
~~~~

- = I) for i > n. In that case Theorem 2.2 reads:
~x.1

Corollary 2.1. Let the assumptions of Theorem 2.2 hold except that we have (2.40) . Then $ is

convex on ~4 if and only if F is convex on x, the inequalities (2.29) hold and in addition

(2.41) ~~~- ( a) > 0, a € X

I 1

-8-
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3. Some characterization of the spectral radius

Let A be an n c n non-negative matrix such that there exists two positive vectors u, v

satisf ying

(3.1) Au = r(A)U, AvT= r(A)v , ~
T 

— (u1,... ,u )  > o~ 
~,T — (v

1
,...,v )  > 0

Assume the normalization

(3.2) u.v . 1 .

i=l

Let P be the set of probability vectors

(3.3) P = (a la  = (a1,...,a } ,  ci~~ > 0, ci. = 1)

In (5, Sec. 3) it was manifested

Theorem 3.1. • Let A be an n x n non—negative irreducible matrix having positive entries on

• the diagonal (or fully indecoinposable, see Remark 3.3 in (5)). Then for any ci € 
~n ’ ~~~~n (Ax).

positive entries (cii > 0) .  The function f ( x )  
~ 

a. log 
~ 

has a unique critical point
1=1

• = 

~~l ~~
) in the interior point of P(~~ > 0) which must satisfy

n (Ax) n (At) .
• . r i ~‘ 1• (3.4) mm L ai log x. L cii log

x>O i=l 1 1=1 1

• Thus , if ci is chosen to be

(3.5) a = (u v ,.. .,u v11 n f l

where u and v satisfZ (3.1) — (3.2) then

n (Ax) .
(3.6) - 

~ 
u~v~ log > log r(A)

since x — u is a critical point of f(x).

From Theorem 3.1 we get

H . Theorem 3.2. Let A be an n x n non-negative matrix such that r(A) > 0. Then

n (Ax) .
(3.7) sup inf 

~ 
a~ log 1 

= log r(A)
asP x>0 1=1n

—9-
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A

Suppose that there exists a positive vector u satisfying (3.1). Assume that

n (Ax) .
• (3.8) inf ~ a~ log—~- = log r(A)

x>O i=l i

• Then the vector v

• (3.9) v = (cil/Ul,... •~
cin/Un)

fulfills (~~,1). In particular if A is irreducible then a is unique and given by (3.5).

Proof: As the left—hand side of (3.7) is a continuous function of A it is enough to prove

(3.7) for A positive. Let U > 0 be the corresponding eigenvector of A. So

n (Ax) n (Au)i v i
L log < L a~ log log r (A)

x>0 1l i i 1  1

n
for any ci such that ~ a. 1. Thus

i=l

n (Ax).
• sup inf 

~ 
a1 log x 

1 
~ log r(A)

asp x>0 i 1  i

The above inequality together with (3.6) yields (3.7). Suppose that (3.8) holds. If u > 0
n (Ax).

• satisfies (3.1) then x = u is a minimal point for f(x) = a1 log ~ 

1 
So

i=l 1.

• 
~~~~~ = ~ a.u~~a . . - ci.uT1

~x. - (Ax) . x. m i mj ~]x=u 1 1 1 ] X=U 1=1

This shows that v given by (3.9) is a left sigenvector of A corresponding to r(A). If A

is irreducible, then u and v are unique up to a multiple of a positive scalar. Thus ci is

of the form (3.5) and since ci s P ,  ci unique . The proof of the theorem is completed.

We now bring an extended version of Theorem 3.2 which includes (3.7) and the Donsker-

Varadhan characterization 12) as its special cases.

Theorem 3.3. Let ‘f’ : P + P be a continuous convex function on P. Define • : -
~ ]P~

(3.10) • 0( x ) = V (log x) .

Let A be an n x n non—neg~tive matrix such that r(A) > 0. Assume

(3.11) ‘(‘‘(log rCA )) ‘ 0

—10—

_ _ _



______  _ _ _ _ _ _ _ _ _ _ _

Then
• n

(3.12) sup inf Z aj~( ~ 
i

J — •(r(A))
asp x>0 i—I. ‘. i /

Assume that the inequality sign holds in (3.11) and suppose that there exists a positive vector

u satisfying (3.1). If

n /(Ax) \
(3.13) inf Z ci

j •( 
~ 

— •(r(A))
x>O il “. i i

then the vector v (3.9) satisfies (3.1). In particular if A is irreducible then a is

unique and given by (3.5) .

Proof. Let t0 — log r (A) , V Ct 0) = e. Then the convexity of ! implies

Y(t )  >~~~(t0
) + (t—t 0)Y ’ ( t 0

)

So
• n f (Ax) \

(3.14) 
~ 

a~ 4’( ~J > ($( r ( A )) — e log r(A)
i_i \ xi /

m (Ax)i• + e  ~ a. log x ~ a e P ~• i— i i

As e > 0 from Theorem 3.2 and the above inequality we get

n
(3.15) sup inf ~ •( r(A) )

x>0 i—l i I

• Since $ is continuous we may assume that A is positive . By choosing x = u the left-hand

side of (3.15) we deduce an opposit. inequality of (3.15) . This establishes (3.12) . In case

the e > 0 we use th arg~~.mts of Theorem 3.2 to analyze the equality (3.12) . End of proof.

Letting $(x) — in Theorem 3.3 we obtain the Domsker-Varadhan characterization (2 1 .

Corollary 3.1. Let the assmmptions o~ Theorem 3.2 hold. Then

n (Ax )~
(3.16) 

. ~~P iflf Z a1 — r C A) .

cieP x>O i 1  i
n

Suppose that

—11—
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ii (Ax )~
(3.17) inf 

~ 
a~ ,~ 

— r(A)
• z~0 i—l j

If A has a positive eigenvector u then the conclusions of Theorem 3.2 apply.

Recall the classical characterization due to Wielandt (12)

(Ax)
i(3.18) inf max — r(A)

x>0 1<i<n

for any non-negative A. Assume that $ is an increasing function of x on P~~. So

n f(nx)
1\ f (Ax )~inf sup 

~ 
a
~$1 ~~ = inf ~

x>0 asP~ 1=1 \ i 1 x>0 \l<i<n i
• 

• 
(3.19)

/ (Ax)1\— $I inf max — $(r(A))\x>O 1<i<n X1 /

Thus if 0 is increasing and sat isf ies the assumptions of Theorem 3.3 then we can inter-

change sup with inf in (3.12). The characterization (3.19) is completely equivalent to the

Wielandt characterization (3.18) while (3.12) seems to be a deeper characterization.

Let A be a non—negative and non—singular. Assume furthermore that A 1 is an M-matrix,

i.e. the off—diagonal elements of A 1 
are non—positive. Following [5) we bring another

characterization of r(A).

Theorem 3.4. Let A be a non-negative and non-singular matrix such that A
1 

is an M-matrix.

Then

(3.20) 

• 

in f su~~~~~~a~ 
~~~~~~~

= —

~~~~

-

Assume that there exists a positive vector u satisfying (3.1) and suppose

(3.21) :~ i~l 
~1 ~~~~~

Then v given by (3.9) satisfies (3.1). In particular if A is irreducible then ci is unique

and given by (3.5) .

Proof. We have avail~ble the representation

(3 .22) J(1 — rI—B, B > 0, r > r (B)

—12—
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and B is reducible if and only if A is reducible (e.g. (8, chap. 8). Again, as in the

proof of Theorem 3.2 one may assume that B is positive. By letting x to be equal to the

positive eigenvector u of A we ismiediately deduce

• 
. 

n 
xj

(3.23) 
X>~ i~i 

~~ (.Ax)1~ ~

Let a be given by (3.5). Obviously for any x > 0 and y — Ax

n x~ n (A~~y) 1 n (By)~
(3.24) 

~ 

= 
~ 

— r — 

~~

From Corollary 3.1 it follows

n (By)~
(3.25) 

~ 
u~v~ > r (B)

i—l Yj

So

(3.26) 

~ 

ujvi (Ax) 
< r  - r(B) = 

(A)

and the equality sign holds if x — u. This establishes (3.20). The equality (3.21) is

• analyzed in the same way as in Theorem 3.2.

Remark 3.1. Theorem 3.4 does not hold for arbitrary non-negative matrices, take for example

A to be a permutation matrix P ~& I. Therefore Theorem 3.4 is not a special case of Theorem

3.3.
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4. Convexity properties of the spectral radius

Let A be an n x n non-negative matrix. Consider the matrix A + D, D € D .  Assi~~e

that the eigenvalues of A + D arranged in the order

(4.1) Re A 1(A) > Re A 2 (A) > ...> Re A lA)

• Let

(4.2) p(D) = A 1(A+D)

We claim that 9(D) is real. If D is non-negative this fact is a consequence of the Perron—

Froberius theorem. For an arbitrary D consider A + D + aI

(4.3) A.
~ 
(A+D+aI) — )..

~
(A+D) + a, k — 1,...

for a big enough A + D + al > 0 and (4.3) implies that p(D) is real. Moreover by consider—

• ing the matrix B = A + D + aX and using the Donsker—Varadhan characterization for B we get

the following characterization for p(D)

(4.4) p(D) = sup L1(D,a)aEPn

Here L1(D,a) is a linear functional on

n n (Ax) .
(4.5) L1(D,ii) = ~ ai

d. + inf 
~ x 

1

i=l x>o i—i i

a = (a
11... ,a), D = diag{d

11. .. ,d }

It is a standard fact (4.4) and (4.5) imply the convexity of p(D) on the set D .  More pre—

cisely we have :

Theorem 4.1. Let A be a fixed n x n non-negative matrix. Assume that p(D), D € D ,  is

• I given by (4.2). Then p(D) is a real valued convex functional on D~.

(4.6) p((01+D2)/2) < (p(D
1) +

Moreover if A is irreducible then the equality sign holds in (4.6) if and onlyJ4~
(4.7) D2 — D 1 =aI

for some a.
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Proof. As we pointed out (4.6) is a consequence of (4.4). So it is enough to analyze the

equality case. Let

• . 
(4.8) A

1 — A + (D1+D2)/2, A
1
u — r1u, A~v = r1v , r1 — p((D1+D

2)/2)

AS A is irreducible we may assume that u, v > 0 and the normalization (3.2) holds. Let a

be given by (3.5). So

• 
n (A x) n (A u)

(4.9) L
1((D1-4-D

2)/2
,a) — inf 

~ 
cii 

~~~

. 
~ = ~ a~ ~ — r1• x>0 jal 1 i 1  i

If we apply the results of Section 3 in (5)

-. n (Bx)~
(4.10) f(x,B) — ~ a1

i— i i

where B + bI is irreducible matrix, for some positive b then f (x ,B) has a unique critical

point in the interior of P~ which must be the minimum point ( f (x )  = + on the boundary of

P a). The equality sign in (4.6) implies

(4.11) L1(D11a) = p(D1
), L1(D2,a) = p(D

2)

That is

(4.12) f(x,A+D
1
) > f ( u ,A-I-D1

) — p(D
1
), f(x,A+D

2
) > f(u,A+D 2 ) — p (D2

)

The uniqueness of the minimal point of f(X,B) implies

(4.13) (A-s-D1)u — p(D
1
)u, (A+D2)u — p(D2)u

As u > 0 (4.7) follows the above equality. The proof of the theorem is completed.

The inequality (4.6) extends Cohen ’s result (1). Let A be a non-negative matrix such

• that r(A) > 0. Clearly, for any D € D~. r(e
DA) is also positive . Define

r (4.14) R(D) — log r(eDA)

According to Theorem 3.2,
.
~-

(4.15) R(D) — sup L (D, ci)
asP 2

I - where

—15—
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(Ax)
(4.16) L

2
(D,a) — 

~ 
a
id. 

+ inf ~ a~ log 
~i=l 1 x>O i—l i

Combining (4.15) and (4.16) and using the uniqueness result stated in Theorem 3.1 as in the

• proof of Theorem 4.1 we deduce .

Theorem 4.2.  Let A be a fixed n x n non-negative matrix having a positive spectral radius.

Assume that RID) is given by (4.14). Then RID) is a convex functional on D .

( 4.17) R ( ( D 1+D2)/2) < (R(D1) + R(D2))/2

• Moreover if A is irreducible and the diagonal entries of A are positive (or A is fully in-

decomposable) then the equality sign holds in (4.17) if and only if (4.7) holds for some a.

Assume that A, B € and furthermore A is positive definite ((Ax, x) > 0 for x ~ 0).

BA is similar to A1”2BA3”2. This shows that A (BA) is a convex functional on 1! for1 n
a fixed positive definite A. If in addition A has non—negative entries then A 1

(DA) is con-

vex on D. This result does not apply in general for non-negative matrices. For example, take

A to be a permutation matrix P 
~ I. However, A1(DA) is convex on - the set of n x n

non-negative diagonal matrices if A 1 is an M-matrix.

—l . +Theorem 4.3. Let A be an M—matrix. Then r(DA) is a convex functional on D— _ _ _ _ _ _ _ _  — n

f(D1+D2) \
(4.18) r~ 2 A) <4  (r (D1A) + r( D 2A))

• Moreover if A is irreducible then the equality sign in (4.18) holds if and only if

(4.19) • 
D2 = a D l

for some positive a provided that D
1 or D2 have positive diagonal elements.

Proof. Using the continuity argument we may assume that in the decomposition (3 .22)  8 is

positive (irreducible), i.e. A is positive (irreducible). Thus if all diagonal elements of

= diag {d~ ,...,.d°) are positive then D
0
A is positive (irreducible). According to the

• • 
Perron—Froberius theorem r(D

0A) is a simple root of the det(AI — D0A) — 0. By the implicit

function theorem r(DA) is an analytic function of D in the neighborhood of D
0
. Then the

convexity of r(DA) would follow if we show that

-16-
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(4.20) r(DA) > r (D 0
A) + Z (d

i~
d

~
°
~

) ar(D P4~) 1  
~i—i

for any D~ with positive diagonal elements. Let ~ , be the .ig.nvectors corresponding to

• D0A and ATD0

(4.21) — r (D0A ) F~, ATD0fl — r(D0A)n

0 ~ = l’~~~ ’~n~ ’ 0 < l’~~~”~n~’ ~ 
— 1

• i—i
It can be shown that

(4.22) 
a r ’k) 

IDO 
— ~ 

~~~~~

- A~ — r (D 0A) —
~~

-
~~~~ i — 1,.. .,n

This can be done by bringing D0
A to the Jordan form and using the simplicity of r(D

0
A). See

for example (10, IX , S5.4J. Thus (4.20) is equivalent to

n d.
• (4.23) r(DA ) ‘ r(D A) ~ —i--

i—l 1

This inequality was established in 15). It follows directly from (3.26). Indeed suppose

that D has positive diagona l elements and let

(4.24) DAy = r(DA)w, w 1w1,... ,w )  > 0

Then according to (3.26)

______ 

Wj

• r(D0A) ~~ j~~ 
~jfl j (D

oAw) i 
—

i~~ 
~~~~ i~

) (DAy)
1 

r(DA) ~~~~

which establishes (4.23) for D with positive diagonal. So (4.18) holds in the interior of

D~. The continuity argument implies the validity of (4.18) on Suppose that A is also

irreducible. Then B in the decomposition ( 3 . 2 2)  is also irreducible, since the inverse of

block triangular matrix is also a block triangular one. As in the proof of Theorem 4.1 strict

inequality holds in (4.23) unless D0A and DA have the same positive eigenvector. So

-17-
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D — for some a > 0. This shows that we have strict inequality in (4.18) unless (4.19)

• holds provided that D
0 (which is either D

1 or D
2) have positive diagonal. The proof of

the theorem is completed .

We conclude this section by pointing out that the convexity of r(DA) on is a strong-

er result then the convextiy of log r( e~A) on D .  Indeed , let

(4.25) D0 — e 0, Q0 — {q ),...,q40)) ,  q~~) log ~~~~ i — l,...,n

Suppose that log r (eRA) is convex at Q = Q0. This means

(4.26) log r (e~A) > log r(D
0A) + r(D

0A)
’ 

~ 

ar~eQA~~~ (q~_q~O)), Q — diag{q1,...,% ).

As in the proof of Theorem 4.3

ar (e~A) T a(4 .27)  
3q I Q—% = r~ ~.t_ fQ A~ r(D 0A ) l

~1~ i, i — 1,.. .,n

where n,~ given by (4.21).

Thus (4.26) is equivalent

• f~ i\~jnj  n f d ~~\~~(4.28) r(e~A) > r(D
OA)fl~~

_
~_ ) — r(D0A) f l ç~.—~~j .) , q~ — log di, i = l,...,n

t -
~ Using the relation between the arithmetic and the geometric means from (4.23) we get

n q1 ~ 
q1 ~~~(4.29) r(e~A) > r(D

0A) 
i~l 

mr > r(D
0A) f l(j ~))

That is the convexity of r (DA) at D
0 s implies the convexity of log r(e~A) at

— log D
0. This demonstrates that the convexity of r(DA) on implies the convexity of

log r(e0A) on D~. On the other hand if A i~ a pi’nnutation matrix ~ I then r(Dp) is not

convex on (for details see (5), Section 3).
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5. Convex functions on the spectrum of totally positive matrices

A real valued n x n matrix is called a totall y (strictly totally ) positive matrix of

order k if all minors of A of order less or equal to k are non—negative (positive). We

denote these matrices by TP~(STP~). For j n we call these matrices simply by TP(STP). A

• matrix A is called oscillat ing if A is TP and some power of A is STP. It is known that

a TP matrix if oscillating if and only if

(5.1) a
u 

> 0, ai(i l) > 0, C
1(1~~1) 

> 0, j — 1,. ..,n, A = (a.j)~ ~ 0

In that case A is totally indecomposable.

If A is TP then

• (5.2) A
1

(A) > A 2 (A) >...> A~~(A) > IA k ( A ) I ,  k j  + l , . . . , n

If A is STP~ then we have strict inequalities in (5.2). See (6) and 191 for proofs of these

• 
. 

results and more properties of these matrices. Let A be TP~. Define $ : A -+ I~ (A c D
n

)

as follows

(5.3) •(D) — F(log A1(C
DA),...,log A .(eDA))

As in Section 2 we were looking for necessary and sufficient conditions on F which imply

that $ is a convex function on A c D for any A which is TP - .  It turns out that we have
3

an analogous result to Theorem 2.2. To do so we need few notations and definitions. Let

a — (a t , . . .  ~ci
j

) and B — ~~~~~~~~~~ and ~ < n. We define a << B if (2.12) holds for

k • l,...,j. Thus if a — (ct1,...,a ) ,  B = (8
1
,...,B ) and a < B then a << B. Conversely ,

• if a B we can extend a to a and ~ to such that a < B. A set X c is

1• - 
-

called a super convex if x is convex and

(5.4) if B € X , a << B, then a € X

Clearly x is super convex in if and only if it could be extended to X c I~ such that

X is strongly convex in I~~. Using the above arguments and Ostrowski ’ a result (Theorem 2.3)

we get

Lesuna 5.1. Let X be a super convex set in . Let F : X + P .  Assume that F € (X) .

—19—

- -



• 

- 

- -  

_ _ _ _  i~~~ _1S1 LL~~~~~~

Th~E

(5.5) F(a) < FIB) if a <<

if and only if

(5.6) ~~~~~
- (a) > ~~~~~

- (~~ >...> (a) ~~ 0X2

for any a € X. Moreover strict inequality in (5.5) holds for a ~ B if and only if

(5.7) 
~~ a ~~~

‘ 

~~~~ li > ~~~~~~ ~~~~~ 
(~~) > 0 if ci > 0

i

• Assume that A is TP. .  Denote

(5.8)  A~~~~(A) — ( A 1(A)~~. . .~~A~~(A) )~ log X 1
~~~ (A) = ( log A1(A ) , . . . , log A~ (A))

• Theorem 5.1. Let A be en n X n non-singular TP~ matrix. If j  < n

(j) (D1+D2)/2 1 ~ 
D1 

• 

D2(5.9) log A (a A) << ~~
- log A (e A) + log A Ce A))

!L i —

(D1+D2)/2 1 D1 D2(5.10) log A(e A) < ~ (log A le A) + log A (e A)1

If in addition A satisfies (5.1), or more generally A is totally indecomposable, then

(D14D2)/2 1 D1(5.11) log A (e A) — (log A (e A) + log A (e A)]

for any 1 < j  < n if and only if (4.7) is satisfied for some a.

Proof. Denote by Cz (A) the k-th compound of A. Thus

D(5.12) c
k
(e ) = e

where is well defined map : D +L) . It is easy to see using the properties of the

c~~çound matrices that is a linear map. According to Theorem 4.2 log r(e Ck
(A) ) is con-

vex on D for k — l , . .. ,j .  Note that the non—singularity of A implies that r(ck(Al) 0.

(D)
Thus log r(e Ck(A)) is convex on D .  Let

—20—
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(5.13) R.~(D) — ~ log A

i(.
DA)

i—l

It is well known that

(5.14) R~(D) — log r(C.
5
(J~A))

Therefore R.~(D) is convex on D for k — l,...,~ . This is .quivalemt to (5.9) for j < n.

For j — n, Rn(D) is linear on V as

(5.15) R~(D) — log det(eDA) = 
i-l 

di + log det (A) .

This verifies (5.10) if A is a TP matrix. Suppose that in addition A is totally indecom—

posable. According to Theorem 4.2 we have a strict inequality in (4.17) unless (4.7) holds.

Thus (5.11) can be satisfied if only (4.7) holds. Trivially (4.7) implies (5.11). The proof

of the theorem is completed.

Theorem 5.2. Let X be a super convex set in P~ for 1 < j < n (a strongly convex con—

taining a point a , a ~~ > ...> a , if j n). Let F : X + P .  Assume that F C C W (X) . ~~~

A be a given n X n non-singular TP~ matrix. Consider a spectral function $ : A +

given by (5.3), where A is a convex set in D
n 

such that

(5.16) log A~~
) (eDA) c X , D € A

Then, for all such A, $ is convex if and only if F is convex on x and satisfies (5.6) in

case that 1 < j  < n. Moreover, if A is totally indeconposable then $ is strictly convex if

and only if F is strictly convex and satisfies (5.7). In case j — n, $ is convex (strictly

convex provided that A is totally indecomposable) if and only if F satisfies the assumptions

of Theorem 2.2.

Proof. A proof of this theorem can be achieved by modifying in the obvious way the proof of

• Theorem 2.2. In fact, all the arguments of the proof of Theorem 2.2 carry over if one notices

that the identity matrix is PP.
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